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Eric Clar’s ideas concerning “aromatic sextets” are extended to a quantitative format in terms of a polynomial
called the “Clar 2-nomial”, along with related derivative quantities. The quantification is successfully tested
to make correlations with a selection of numerical data, including resonance energies, bond lengths, and
NICS ring-aromaticity values.

Introduction

About 70 years ago, Pauling and Wheland started a funda-
mental development of resonance theory with a quantitative
formulation that entailed diagonalization of ever larger matrices.
Still, especially Pauling managed to cast the theory in a more
convenient, more chemically manifest, less computational
qualitative form as summarized in his masterwork1 on The
Nature of the Chemical Bond. Then also in a modestly more
quantitative more purely organic focus, Wheland2 wrote his
Resonance in Organic Chemistry. However, starting about 60
years ago, there built up a shift to focus ever more toward
molecular-orbital theory especially if quantitative conclusions
were to be drawn. Still, almost 50 years ago Eric Clar began
what may be viewed as a refinement of the simplified qualitative
resonance theory, to focus on the efficacy of considering
“aromatic sextets”, the accompanying notation, and its use to
qualitatively correlate a wide range of molecular properties. In
1970, Clar brought this work to a conclusion with the publication
of his short charming book3 The Aromatic Sextet, where his
ideas were illustrated for the range of benzenoids then available.
Since then there have been dramatic developments of related
novel conjugated species: benzenoid polymers (such as poly-
para-phenylene), carbon nanotubes, fullerenes, and miscel-
laneous other nanostructures (nanocones, nanotori, and hypo-
thetical “negatively-curved” structures); and at the same time
more focus on decorated (or defected) graphite has emerged,
along with synthetic work on ever larger benzenoids, especially
with Müllen’s group.4 It has become not uncommon to note
correlations of Clar’s formulations with various properties -
but almost solely in a purely qualitative manner. Notably,
Randic’s extensive review5 of “aromaticity” emphasizes Clar’s
qualitative ideas, where the author calls attention to the fact
that Clar’s theory is an easy model that allows understanding
and predicting many properties of benzenoid species without
the need of complicated calculations.

Here, then a quantitative formulation of Clar theory is sought,
to apply not only to benzenoids considered by Clar but also to
these various more recent novel conjugated nanostructures.
Rather strangely over the decades since Clar’s, book surprisingly

little quantitative work deriving from his ideas has been reported.
Part of the reason for this may be found in Clar’s style of
exposition - by example, with qualitative rationalizations, and
without formal definitions or formal statements of principles.
Thence to more plausibly discern Clar’s overall idea and intent,
one needs to carefully look at his book as a whole. One type of
approach to quantification is to seek to parallel Pauling and
Wheland’s early work in setting up Hamiltonian matrices on a
basis of the structures Clar used (rather than the Kekule
structures of Pauling-Wheland resonance theory). Indeed this
has been nicely done by Herndon and Hosoya,6 to find quite
favorable quantitative correlations with resonance energies
otherwise elaborately computed via quantum chemical packages.
Moreover, it has been emphasized7 how Clar’s ideas can be
seen to directly motivate the (quantitative) “conjugated-circuits”
resonance-energy formalism, which however is based on Kekule
structures. But in fact such quantum-theoretic rationalization
seems to be fairly foreign to Clar’s style. Nevertheless, one
would surmise that a more direct quantification of Clar’s ideas
should certainly be successful because of this thoroughly
founded empirical basis of Clar’s development.

Here, we seek to use “Clar structures,” and a few invariants
derived directly therefrom to correlate to molecular properties,
without any explicit intervention of Hamiltonian matrices or
Kekule structures. Moreover, beyond resonance energies we
look at bond lengths as well as local aromaticity indices as given
from the nuclear independent chemical shift (NICS) values.
Indeed, a favorable comparison of NICS aromaticities with
Clar’s ideas has been recently noted by Ruiz-Morales8 and
Gutman and Ruiz-Morales9 in terms of their Y-rule. The focus
here on conventional benzenoids is to lay the appropriate
quantitative groundwork for next dealing with the great variety
of related novel nanostructures.

A conjugated polyhex or benzenoid network B is viewed as
a graph, consisting of its sites and edges between the pairs of
(σ-bonded) sites. A Clar structure C of B may be viewed as a
condensation of Kekule structures into aromatic sextets insofar
as possible. More formally one considers C to be a substructure
of B such that every site is included in C such as to be either
paired to exactly one other site or else included in an aromatic
sextet (a 6-cycle of B). The set of pairings (or double bonds)
and aromatic sextets are all to be disjointed from one another,
and done so as to saturate all sites such that among the pairings
no triple occurs around a hexagon of B, this rather being recast
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as an aromatic sextet. Thus, for naphthalene there are 2 such
Clar structures, each with a sextet of 1 ring with 2 pairings
remaining in the neighboring ring, as seen in parts a and b of
Figure 1, where following Clar the ring associated to a sextet
is indicated with a circle inscribed within the (hexagonal) ring.
One benzenoid may have Clar structures with different numbers
of sextets, with Clar emphasizing3 that those Clar structures
having a maximal number of sextets are preferred. These so-
favored Clar structures are here termed sextet-maximum. Thus,
for phenanthrene in Figure 2, there are two Clar structures with
the first (the sextet-maximum one in part a of Figure 2) with 2
sextets favored over the other (in part b of Figure 2) with but
a single sextet. But Clar indicates (on page 15 of his book3)
that there is some slight degree of “aromaticity” for the center
ring (and speaks of its “induced sextet”). He then uses a notation
(his structure XI) for this to evidently avoid writing down the
second of these structures, though we do not use this sum-
marizing notation involving two (joint) arrows, inasmuch as Clar
identifies a second meaning for arrows added into Clar
structures. Basically, he also indicates that if a single sextet can
“migrate”, this adds stability, and also uses an arrow to indicate
the mode of “migration”. Here, noting the simplest migration
is from one ring to a neighbor one that (before migration) has
two isolated pairings, we choose to have an arrow indicate this
possibility. Thus, we can so decorate each of the Clar structures
of naphthalene with an arrow from the Clar circle to the adjacent
ring. Apparently, Clar draws more arrows even to the nonad-
jacent rings, here we consider arrows to the adjacent rings first
to move the sextets, then again the migration of that sextet to
the next adjacent ring, and so on, hence covering all the
possibilities considered by Clar. For phenanthrene, the first
2-sextet Clar structure would then have no arrows, whereas the
second would have two, from the central sextet to each of the
terminal rings. Larger benznoids can have more Clar structures
(with more arrows), for example there being eight Clar structures
for the three-fold annelated triphenylene of Figure 3. This
molecule is particularly noteworthy as Clar relatively clearly
enunciates (on page 39 of his book3) the relevance of Clar
structures that are not sextet-maximum. Particularly in light of
resonance theory, when there are many more such sextet-near-
maximum Clar structures than the sextet-maximum Clar struc-
tures, these nonmaximum Clar structures can be anticipated to
manifest some relevance - especially one might imagine for
quantitative purposes, as is the goal here. This point may also
seen in the earlier mentioned Clar-theoretic works6,7 involving
quantitative chemical application. In this work, we construct
Clar 2-nomials with all the Kekule structures in case of
essentially Kekulean molecular benzenoids. This also empha-
sizes the fact that appropriate importance should be given to
all the Kekule structures and not only to the sextet-maximum
structure as normally done. A final point is that the so-called
Kekulean benzenoids B considered here are to have at least one
Clar structure as defined above - the non-Kekulean benzenoids

being radicaloid and addressed in a separate article. It also needs
to be mentioned that the general expression for the Clar
2-nomials for linear polyacene series are relatively easier to
figure out. However, the same for a higher analogue of zigzag
polyacene is rather difficult. Nevertheless, following graph
theoretical arguments, algorithms can be developed to get Clar
2-nomials for such systems.

This preceding paragraph constitutes our framework for
dealing with Clar structures and their quantifications, though
as an aside it may be noted that there are other definitions of
Clar structures, as presumably occurred because of Clar’s
informal style of presentation (without formal definitions or
statements of principle, but with a multitude of examples,
focusing on rationalizing one or another property, and then in
naught but a qualitative manner). Thence, the definition here
(and also by several other authors, starting with ref 6) attends
to Clar’s “overall usage”, and also, as argued in the next
sections, it and subsequent quantifications relate to Pauling-
Wheland resonance theory. Other definitions of Clar structures
are briefly mentioned in the Appendix.

Quantification: Global Invariants. In a zero-order Pauling-
Wheland resonance-theoretic picture, each Kekule structure can
be approximated as of the same importance in describing a
molecule’s ground state (and determining molecular properties).
Thus, the number K(B) of Kekule structures of B is a chemically
meaningful invariant, and in their book10 Cyvin and Gutman
list many formulas for K(B) for different special classes of
benzenoids. Clar structures on the other hand even in a zero-
order picture are typically of different weights. It is natural to
weight them in terms of the number sB(C) of aromatic sextets
occurring in Clar structure C of polyhex B, and perhaps also of
relevance is the number aB(C) of arrows (corresponding to
naphthalene subgraphs H of B such that H contains 1 Clar sextet
and 2 isolated edges of C). Moreover, sB(C) and aB(C) are
“additive” (e.g., for disjoint fragmental B), whereas C having
each different part of C indicating pairing-resonance occurrences
in each corresponding part of the molecule, is a “global”
quantity, being like independent “multiplicative” probabilities
for each occurrence (especially in the simplifying case of disjoint
fragmental B). Thence the weight associated to C naturally is

Figure 1. Clar structures of naphthalene.

Figure 2. Clar structures of phenanthrene.

Figure 3. Clar structures of tri annelated triphenylene.
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xsB(C)yaB(C) with x (and y) indicating a contribution of a sextet
(and arrow) to the overall probability of occurrence in the
description of B. In as much as one can think of each aromatic
sextet comprised from 2 local resonance patterns (with edges
alternating around the hexagon in two different ways), and recall
the Pauling-Wheland zero-order approximation for Kekule
structures, one can surmise that a reasonable (unnormalized)
weight for x might be ≈2, whereas y ≈ 1. Nevertheless, at least
initially, we leave x and y as variables.

The different weights of the different Clar structures may be
added together to give an overall molecular sum, here termed
the Clar 2-nomial

CB(x, y) ≡∑
C

B

xsB(C)yaB(C) (1)

Clearly, this concisely and elegantly encodes aspects of the
Clar structures identified as important by Clar: first, the number
of Clar sextets; and second, the sextets’ “mobility”. Thus, the
Clar 2-nomial for naphthalene is 2xy, and for phenanthrene is
x2 + xy2. Especially with an assignment of numerical values
for x and y, CB(x,y) may be viewed as the analogue of the Kekule
structure count K(B) used in conjunction with ordinary resonance
theory.

In a more “additive” way, these two aspects (of sextetness
and sextet-mobility) are given by

〈s〉B ≡
∂ln CB(x, y)

∂ln x
)∑

C

B

sB(C)xsB(C)yaB(C) ⁄ CB(x, y) (2a)

〈a〉B ≡
∂ln CB(x, y)

∂ln y
)∑

C

B

aB(C)xsB(C)yaB(C) ⁄ CB(x, y) (2b)

Here, the weight xsB(C)yaB(C)/CB(x,y) is essentially a probability
for the occurrence of a Clar structure C with sB sextets and aB

arrows. Thence, eq 2a is an average number of aromatic sextets,
and so is called the (average) sextetness. Also, eq 2b being an
average number of mobility-indicating arrows, is called the
(average) Clar mobility. For example, for phenanthrene, one
has 〈s〉 ) (2x2 + xy2)/(x2 + xy2) and 〈a〉 ) (0 + 2xy2)/
(x2 + xy2), or a little more simply just 〈s〉 ) (2x + y2)/(x + y2)
and 〈a〉 ) 2y2/(x + y2).

It may be remarked that H. Hosoya and co-workers11,12 have
defined an (aB-independent) “Clar polynomial” in terms of an
alternative definition of Clar structures, and this has been
formally studied, even in some subsequent papers by other
authors.13 El-Basil14 introduces a polynomial the same as CB(x,1)
for the special case that B is a cata-condensed all-kink chain,
and he extends15 this polynomial to all benzenoids, finally
calling16 it the “Clar polynomial”, which then also especially
Zhang and Zhang17,18 have dealt with in a formal manner. But
neither of these polynomials seems to have been correlated to
experimental data - nor have refined “derivative” invariants
been studied, or even introduced. The naturalness of the current
2-nomial in encoding relevant information about the whole set
of Clar structures recommends them for study.

Table 1 lists the Clar 2-nomials for a selection of benzenoids,
as identified in Figure 4. These results are utilized in the fittings
of the subsequent sections.

Resonance-Energy Correlations. The resonance energy of
a benzenoid compound is a standard measure of the extra
stability of the aromatic system compared to the corresponding
number of localized double bonds.1,2,4,7 (and somewhat similar
to isolated double bonds, as in separate ethylenes). There are
at least two natural Clar-theory-based ways to seek correlations

to resonance energies, for example such as those computed by
Dewar and de Llano.19 Our first scheme parallels conjugated-
circuits theory,20,21 and takes the Clar resonance energy to be
a linear combination of the sextetness and Clar mobility,

CRE(B) ≡ A1〈s〉B +A2〈a〉B (3)

where A1 and A2 are numerical constants. If the parallels7 to
conjugated-circuits theory are preserved, then A1 and A2 should
have values respectively slightly less than 1 eV and 1/2 eV.

The Clar resonance energy for 18 benzenoids of different
topological patterns (I-XVI, XVIII and XIX in Figure 4) have
been treated, with x ) 2 and y ) 1. This choice of x and y
correlates with Pauling-Wheland resonance-theoretic ideas, if
we imagine each aromatic sextet to be made up of 2 local
resonant pairing patterns. Though one might imagine modifica-
tions to these values, we keep these same simple values for x
and y in this article. Parametric quantities in the expression of
CRE(B) have been found by a least-squares fit to the resonance
energy reported by Dewar and de Llano (DdLRE).19 The result
is

A1 ) 0.942 eV, A2 ) 0.505 eV, with σ) 0.215 eV,

r) 0.981. (4)

The quite reasonable standard deviation (σ) and the high
correlation coefficient (r) indicate a quite successful fit, as does
the closeness of the parameter values (A1 and A2) to those
anticipated from the relation7 to conjugated-circuits theory. The
values of CRE(B) estimated for 18 benzenoids are given in Table
1. It is interesting to note that CRE(B) for phenanthrene (IV) is
larger that that for anthracene (III), the same has been nicely
explained recently by Poater et al.22 by density functional
calculations. Further the agreement is apparent from the plot
of CRE(B) vs DdLRE(B) as given by Figure 5. The straight-
line nature of the curve with a gradient close to unity supports
the argument.

TABLE 1: Clar Binomial for the Benzenoids Given in
Figure 4.

molecule clar binomial CB(x,y) CRE(B)

I. x 0.942
II. 2xy 1.447
III. 2xy + xy2 1.616
IV. x2 + xy2 1.907
V. 2x3 + 3x2y4 + 2xy3 3.185
VI. x3 + xy3 2.753
VII. x2 + 2xy2 1.918
VIII. 2x2y + xy2 2.302
IX. x2y2 + 2x2y 2.558
X. 4x2y2 2.894
XI. 2xy2 + 2xy 1.700
XII. 3xy2 + 2xy 1.750
XIII. 2x3y + xy3 3.157
XIV. x3 + 2x2y2 2.861
XV. x3 + 2x2y3 + xy3 + x2y2 3.014
XVI. x3y3 + 3x3y2 + x3y + 2x2y4 + 2x2y3 + xy3 3.738
XVII. x4 + 2x3y2

XVIII. x4 + 6x3y3 + 2x2y5 + 2x2y4 + 2x3y 4.042
XIX. 16x4y4 5.783
XX. x7 + 6x5y3 + 6x4y4 + 2x3y6

XXI. x6y6 + 6x6y4 + 8x6y3 + 3x6y2 + 2x4y3

XXII. x7 + 2x6 + 6x6y2 + 24x5y5 + 15x5y4 +
8x4y9 + 6x4y4 + 6x4y3 + 6x3y5 + 2xy3

XXIII. x13 + 12x11y3 + 18x10y5 + 6x10y3 + 2x9y9 +
6x9y8 + 30x9y7 + 15x9y6 +6x9y5+2x9y3 +
18 x8y8 + 6x8y7 + 6x8y6 + 6x8y3 + 6x7y9 +
6x7y7 + 2x7y12 + 24x7y6 + 12 x6y6 + 6x6y5 +
2x6y3 + 2x4y3

Clar Theory for Molecular Benzenoids J. Phys. Chem. A, Vol. 113, No. 6, 2009 1153



A second even simpler scheme parallels the conventional
naı̈ve resonance theory, where the resonance energy is expressed
purely in terms of the Kekule-structure count K(B). Because
CB(x,y) multiplicatively factors when considering disjoint frag-
ments, it is natural to consider its logarithm as a more nearly
additive property - much as in parallel to what has already
been done23 with K(B). That is, this approximation makes a
second resonance-energy approximant as

CRE ′ (B) ≡ A ln CB(x, y) (5)

where A is a constant. Again we make a least-squares fit to
obtain

A) 0.987 eV, with σ) 0.180 eV, r) 0.987 (6)

which evidently is a very good fit. We also plot CRE’(B) versus
DdLRE(B) in Figure 6 for the same set of benzenoids as before.

Overall, the prediction of resonance energy of benzenoid
systems by either of these simple methods through use of the
Clar 2-nomial may prove useful in the study of larger benzenoid
systems, where the evaluation of the resonance energy by
experiment or by resource-intensive quantum chemical calcula-
tions are usually prohibitive.

Local-Invariant Quantification. Besides global invariants
(for the molecule as a whole), one desires local invariants for
different parts of the molecule. Thus, the Clar bond order for
the π electrons assigned to an edge e of B is defined as

CBOB(e) ≡∑
C

B

{ εB(C, e)+ 1
2

ηB(C, e)}xsB(C)yaB(C) ⁄ CB(x, y)

(7)

where εB(C,e) is 1 or 0 as e is or is not a double bond in C, and
ηB(C,e) is 1 or 0 as eis or is not in an aromatic sextet of C.
That is, for a given edge e of B, its occurrence as a double
bond of C fully contributes to a π bond order, whereas its
occurrence in an aromatic sextet where bonds are delocalized
(being contained in 1 of the component local pairing patterns

Figure 4. The set of benzenoids I-XXIII; rings of different (local)
aromaticity are indicated by A, B, C, etc.; and different bond lengths
are indicated by a, b, c, etc. in selected molecules.

Figure 5. Plot of CRE(B) vs DdLRE(B).

Figure 6. Plot of CRE’(B) vs DdLRE(B).
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but not the other) contributes just 1/2 - and otherwise if e does
not occur in C it contributes 0. These bond orders CBOB are
typically much easier to compute than the Pauling bond order
(or the MO-based Coulson bond order), though they frequently
are similar, with the Clar bond order arguably improving a little
on the Pauling bond order. That is, the Pauling bond order
weights all Kekule structures equally, whereas it is known (e.g.,
from conjugated-circuits theory, or examples of quantitative
Pauling-Wheland VB models) that the Kekule structures
admitting more sextets should be weighted more highly (as is
done with CBOB).

Further, there are two related “local aromaticity indices” for
a (6-cycle) ring R of a benzenoid B,

CAIB(R) ≡∑
C

B

sB(C,R)xsB(C)yaB(C) ⁄ CB(x, y) (8a)

CAI′B(R) ≡∑
C

B

aB(C,R)xsB(C)yaB(C) ⁄ CB(x, y) (8b)

where sB(C,R) is 1 or 0 as R is or not a Clar sextet in C, and
aB(C,R) counts the number of naphthalenes which contain R⊆C
along with 2 other double bonds of C. Here, then CAI′B is a
secondary aromaticity index indicating Clar’s “induced sextets”
arising from migration of the sextets. It can be seen that aB(C,R)
is 0, 1.

These various local invariants are intimately related to the
earlier considered global invariants. First, ∑R

B sB(C,R) ) sB(C)
and ∑R

B aB(C,R) ) aB(C), so that

〈s〉B )∑
R

B

CAIB(R) and 〈a〉B )∑
R

B

CAI′B(R). (9)

Thus, the expression A1CAIB(R) + A2CAI’B(R) is naturally
anticipated to be an overall local aromaticity index for ring R
(for example, simulating NICS values). Also, because the net
number of π bonds in a Clar structure is just half the number
n of sites, one has

n
2
)∑

e

B

CBOB(e). (10)

Being the local indicator of the presence of a bond, CBOB(e)
should correlate with bond lengths - at least so long as x and
y are chosen properly.

Bond-Order Correlations to Bond Lengths. The decrease
of bond length from a carbon-carbon single bond and the
increase of it from a double bond is a measure of aromaticity
in benzenoids. Now, the Clar bond length (CBL) for a bond
e≡{i,j} is presumed to be of the form

CBL(e))B1 +B2{CBOB(e)}+B3 ⁄ √didj (11)

where B1, B2, and B3 are parametric quantities, and di and dj

are the (pi-network) degrees of the two carbons comprising the
edge e. This last B3 term is included because it seems that bond
lengths depend on the functionalities of the carbons involved,
the functional dependence here being chosen as that involved
in the Randic connectivity index,24 such as has been25,26 notably
successful in making correlations with a wide variety of
properties. (An especially clear case manifesting this functional-
ity dependence of the bond lengths is found for the central bond
of naphthalene, which is otherwise anomalously long.)

Here, we have chosen ten different benzenoids (I-VII, IX,
X, and XX in Figure 4) having a total of 58 different bond
lengths which are marked as a, b, c, and so forth in the figure.

The experimental bond lengths collected by Kiralj and Ferreira27

have been least-squares fit to the expression of 11 to give

B1 ) 1.520 A
o

, B2 )-0.098 A
o

, B3 )-0.185 A,
o

with σ) 0.009 A
o

, r) 0.957 (12)

which evidently is a decent fit. The set of CBLB and experi-
mental bond lengths are very much in agreement, as displayed
in Figure 7. The numerical values of experimental bond lengths
appear in Table 2. The negative values of B2 and B3 are expected
as these last two factors in eq 11 decrease the bond length from
a single-bond length B1, in a π network. The CBL values also
match closely with the theoretically predicted values both by
Morikawa et al.28 and more extensively by Kiralj and Ferreira,27

who attain a similar r-value, though with more parameters. Not
only our Clar bond order but also perhaps more especially our
choice for the functionality dependence (in the B3-term) of the
atoms involved in a bond seems a more “economic” choice than
Kiralj and Ferreira’s triple of parameters associated to their n,
l, m indices.

Yet further, the Clar bond order may be correlated with other
bond orders computed by other more quantum-chemical pro-
cedures, for example for the VB-based bond-order of Li and
Jiang,29 using exact solutions to the nearest-neighbor full
covalent-space VB model. They use a bond order linear in the
local interaction operator such as to give 1 for a singlet-coupled
pair of sites and 0 for a triplet coupled pair of sites. However,
the more conventional choice of Penny30 instead uses the linear
operator such as to give 1 for a singlet-coupled pair of sites
and 0 for an uncorrelated pair of sites. (It may be deemed that
these Penny bond orders have a more reasonable range of values,
coming nearer to 0 for neighbor pairs of sites at “essentially
single” bonds, and having a sum of bond orders to nearest
neighbor sites from a given site that more frequently does not
so greatly exceed 1.) This Penny bond order of a bond e≡{i,j}
for a benzenoid B with wave function Ψis given as

Figure 7. Plot of Clar bond length vs experimental bond length.

Figure 8. Plot of 1st fit for Clar aromaticity index vs NICS-1.
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PBOB(e) ≡-4
3

〈Ψ| sbi sbj|Ψ〉 (13)

where sbk is the spin operator for site k. Making a direct
comparison of our Clar bond order to the Penny bond orders
for the 8 benzenoids of Li and Jiang29 yields a correlation
coefficient of r ) 0.861. However, the fit may be improved via
a least-squares fitting of the same type as used for the
experimental bond lengths, whence again for the same 8

benzenoids (and 59 symmetry distinct bonds) as considered by
Li and Jiang,29 we find

B1 ) 0.164, B2 ) 0.263, B3 ) 0.643, with σ) 0.025,

r) 0.960 (14)

The advantage to our Clar bond order is that it is considerably
less computationally demanding - the full covalent-space VB
bond orders involving wave functions that involve around a
million configurations at 26 sites - and with ever increasing
numbers thereafter.

Local Aromaticity Correlations to NICS Values. Clar
aromaticity is defined in terms of our local aromaticity indices
for ring R as

CA(R))C1CAIB(R)+C2CAI′B(R)+C3
1

1+ nR ⁄ 6
(15)

where C1, C2, and C3 are parameters and nR is the number of
benzene rings which abut to ring R. This third term here can be
imagined to be relevant if the aromaticity index to be fitted
against has nonlocal contributions (from neighbor rings), such
as presumably is the case with nucleus-independent chemical
shift (NICS) values, which are a well-advocated measure of local
aromaticity in benzenoids31,32 (and beyond).

First, we chose a set of molecules (I, V, VI, XX-XXII in
Figure 4) and compare CA with the NICS-1 values reported by
Moran et al.31 A least-squares fit yields

C1 )-3.345, C2 )-24.921, C3 )-5.476,

with σ) 2.398 ppm, r) 0.860. (16)

This is only a modest fit for such a correlation coefficient, as
is also seen from Figure 8. Here, contrary to expectation the
second term dominates over the first; that is, the ratio of C1

and C2 is inverse to that we anticipated.
As a second comparison, we chose a set of molecules (I-IV,

VII-IX, XIV, and XVII in Figure 4) and the NICS-0 data of
Portella et al.32 A least-squares fit yields

C1 )-3.909, C2 )-9.628, C3 )-5.426,

with σ) 0.831 ppm, r) 0.946. (17)

which is a notably better fit as also is seen from Figure 9. Here,
also the ratio of C1 and C2 is more nearly in concert with our
expectations - though even now C2/C1 is quite different than
1/2. Further, for both models (of eqs 16 and 17) there is a notable
contribution from the third term, such as seems to indicate the
fact that NICS indices have noticeable (less local) contributions
from the neighboring ring, which has been demonstrated in
several examples, in particular, by Poater et al.33 This compari-
son between eqs 16 and 17 also indicates that NICS-0 values

TABLE 2: Experimental Bond Length and Clar Bond
Length of Chosen Bonds in Benzenoids (Figure 4)

molecule and bond bond
experimental bond

length (Å)24 CBL(B)/Å

benzene a 1.390 1.380
naphthalene a 1.407 1.404

b 1.371 1.357
c 1.422 1.421
d 1.420 1.411

anthracene a 1.395 1.397
b 1.432 1.427
c 1.428 1.429
d 1.353 1.349
e 1.418 1.442

phenanthrene a 1.338 1.349
b 1.422 1.429
c 1.413 1.411
d 1.414 1.413
e 1.349 1.365
f 1.381 1.396
g 1.376 1.365
h 1.391 1.413
i 1.454 1.442

coronene a 1.424 1.435
b 1.420 1.411
c 1.414 1.421
d 1.372 1.357

triphenylene a 1.469 1.449
b 1.411 1.411
c 1.405 1.407
d 1.385 1.371
e 1.390 1.390

pyrene a 1.347 1.345
b 1.429 1.432
c 1.417 1.423
d 1.400 1.397
e 1.380 1.380
f 1.423 1.435

chrysene a 1.402 1.396
b 1.437 1.429
c 1.331 1.349
d 1.417 1.429
e 1.417 1.411
f 1.415 1.413
g 1.361 1.365
h 1.392 1.396
i 1.370 1.365
j 1.409 1.413
k 1.453 1.442

perylene a 1.426 1.411
b 1.411 1.421
c 1.359 1.357
d 1.393 1.404
e 1.384 1.374
f 1.429 1.435
g 1.471 1.458

hexa-peri-benzocoronene a 1.417 1.419
b 1.446 1.442
c 1.417 1.419
d 1.458 1.450
e 1.398 1.397
f 1.376 1.380

Figure 9. Plot of 2nd fit for Clar aromaticity index vs NICS-0.

1156 J. Phys. Chem. A, Vol. 113, No. 6, 2009 Misra et al.



are better correlated, which is also apparent from Figures 8
and 9.

As a third comparison, we constrain C1 and C2 to be in the
same ratio as the parameters A1 and A2 appearing in the
resonance energies. That is, we take C1 ) CA1 and C2 ) CA2

and make a least-squares fit to the NICS-0 data to find

C)-8.365, C3 )-4.800, with σ) 1.609, r) 0.784.

(18)

This evidently works a little worse than the models of eqs
16 and 17, as gauged by σ and r and the plot in Figure 10 in
the Supporting Information. However, eq 18 entails notably
fewer parameters and has the advantage that the sum of the
local aromaticity indices gives (up to scale and the simple C3

term) the total resonance energy, which is one of the common
choices for a numerical value of global aromaticity. This then
is a simpler chemically grounded approach.

In ref 32, Poater and co-workers also calculate harmonic
oscillator model of aromaticity (HOMA) values for I-IV,
VII-IX, XIV, and XVII. It will also be interesting to correlate
CA(R) with these HOMA values. Because HOMA values have
less influence from the neighboring rings than NICS values,
the correlations are likely to improve. In fact, one can make
such correlations with many different local and global properties
exploiting the properties of Clar 2-nomials.

The comparatively less-impressive fits for aromaticity indices
might not necessarily be so unsurprising because there are a
variety of ways to define numerical aromaticity indexes, either
local or global. Really, one can imagine that this variety is a
manifestation that aromaticity is properly a “partial ordering”
rather than a strict numerical ordering. This has implications
for deviations of different properties X from those expected for
nonaromatic (bond-localized) species - with different choices
for X being: an energy, a geometry (as encoded in terms of
bond lengths), various magnetic properties, certain electric
properties (e.g., polarizabilities), various reactivities (with
different selected reactants), or perhaps UV-optical spectral
positions. Indeed, each of such property deviations has been
proposed as a measure of “aromaticity”, though an ordering of
two molecular species under consideration of one property might
not agree with that under another property. That is, the true
aromaticity may be viewed7,34 generally to satisfy35 just the
general conditions of a partial ordering: R ( � and � ( R. and
also R ( � and � ( γ R ( γ (for species R, �, γ). A related
way to say this is that aromaticity generally needs to be
represented not by a single number but by a sequence of
numbers, the minimum number needed for such a sequence to
faithfully represent the partial ordering being termed36 the
“dimensionality” of a partial ordering. If further the different
aromaticity indices advocated are simply different linear
combinations of the functions determining the different members
of the sequence, then this dimensionality devolves to that of a
linear space and one obtains the multidimensional aromaticity
idea of Katrizky et al.37 - as has been much studied.38-41

Thence, we can imagine that the two different NICS-k indices
with k ) 0 or 1 are naught but two different (local) aromaticity
indices, with that of eq 18 being a third, such that each of them
agrees with the underlying partially ordered aromaticity. That
is, the degree of slight but noticeable disagreement between the
NICS-0, NICS-1, and CA local aromaticities might well be
naught but a manifestation of a partial ordering, as contrasted
to a simple linear (or total) ordering. The multidimensional
nature of aromaticity as discussed by many authors42 also points

to the fact that aromaticity is difficult to be quantified by a single
descriptor, which is also the genesis of the problem discussed
here.

Conclusion and Prospects. In conclusion it is seen that Clar’s
qualitatively illustrated3 ideas, though harking back to classical
chemical bonding ideas, evidently extend in a fairly straight-
forward way to quantitatively treat several different molecular
properties for a range of benzenoid molecules of the type
addressed by Clar. These fittings are comparable to some earlier
fits, though often a little better, occasionally with slightly higher
accuracy, perhaps with fewer parameters, and also often
involving comparably simpler computations, with a clearer
simple chemical interpretation. Moreover, the variety of different
fits are made from one unified “Clar-theoretic” viewpoint.
Thence, these results are quite favorable, though it should
perhaps not be unsurprising because Clar had such great
qualitative success with his ideas. Indeed the real surprise might
be that there has been so little previous quantitative application
of Clar’s ideas.

Overall, our results recommend our interpretation and quan-
tification of Clar’s ideas. In particular, the present definition of
Clar structures is supported, along with our form of Clar
2-nomial, incorporating “sextetness” and “mobility” ideas in a
natural way, in consonance with Pauling-Wheland resonance-
theoretic ideas. The values of x ) 2 and y ) 1 in particular are
suggested from Pauling-Wheland resonance theory, and are
supported in that some trial variations of x and y away from
these values, indicate that optimal values for x and y are very
near these chosen values. We surmise that such quantifications
should apply for several of the other properties (molecular
reactivities, UV-vis spectra, and chemical shifts) considered
by Clar. But of more interest for us is the prospect for the
application of Clar’s ideas, as embodied in the new ideas and
invariants introduced here, to treat related novel conjugated
nanostructures, along with further relevant magnetic and electric
properties. The success registered here bodes well for this
enterprise.

Appendix on Formalizations of Clar’s Ideas. In the decades
following Clar’s book,3 a number of different definitions of Clar
structures have been made and investigated in some fashion.
One early definition is that of Hosoya and co-workers11,12

wherein triples of double bonds alternating around a 6-cycle
are allowed, though only with certain relative orientation-
dependent arrangements of the bonds - this leads to a final
mathematical result that the number of these “Hosoyan” Clar
structures equals the number of Kekule structures for the case
of cata-condensed benzenoids. He and He13 and also Guo and
Zhang43 follow Hosoya while allowing even selected larger
rings, apparently for the sake of a more general form of this
mathematical theorem beyond the cata-condensed case. El-Basil
and Randic44 and others45,46 also allow larger rings, but do not
otherwise follow Hosoya. Sometimes El-Basil follows47 Hosoya,
and sometimes makes yet other choices.15 Herndon and Hosoya,6

Randic and El-Basil,16 El-Basil,14,48 and Shiu et al.49 use the
definition given here. Zhang and Zhang17,18 refer to Clar
structures as here under the title of “Clar covers”. John et al.50

simply forego the exclusion of cyclic triples of double bonds.
However, Randic,51,52 and often also Gutman,53,54 as well as
Dias55 and others56,57 often strengthen this condition with the
requirement that the number of aromatic sextets be a maximum
for the given benzenoid. Different Clar-related polynomials have
also been defined (as associated with alternative definitions of
Clar structures), again starting with Hosoya and co-workers11,12

(and as discussed earlier in our section introducing the Clar
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2-nomial). Most of these articles give some formal results or
construction, without reference to property data. Again Clar3 is
quite different than the bulk of these later authors, eschewing
formalism, and proceeding by a multitude of examples (with
focus on explicating diverse experimental data). Somewhat in
Clar’s tradition, Randic’s substantial review5 of aromaticity
champions qualitative chemical understandings from the point
of view based on sextet-maximum Clar structures. Ruiz-Morales
and Gutman8,9 focus on Clar structures where a maximum of
sextets is only the second rule of selection, with the first
dominating rule selecting the collection of sextets in a structure
to cover as many internal vertices as possible - and the observed
qualitative correspondences to quantum-chemical NICS values
speaks to the relevance of this choice. Another type of paper
over the last decades has focused on benzenoids in which there
is a special Clar structure where no isolated edges occur. Indeed,
Clar discussed such “sextet resonant” benzenoids, which he
called “fully benzenoid”; and during the past few years there
have been several articles that note coincidences beyond classical
benzenoids of different special chemical behaviors that correlate
with “sextet resonance”, but such “sextet resonance” is not the
focus in our current article. Again, Herndon and Hosoya6 who
use the present definition also connect to concrete data, while
further this idea connects nicely with Pauling-Wheland reso-
nance theory. Thus, there is good (even a priori) reason to
entertain the definition given here.
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